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ABSTRACT

DuImly (0,1) variables are frequently used in statistical model-
ing to represent the effect of certain extraneous factors. This
paper presents a special purpose linear programming algorithm for
obtaining least-absolute-value estimators in a linear model with
dun~ny variables . The algorithm employs a compact basis inverse
procedure and incorporates the advanced basis exchange techniques
available in specialized algorithms for the general linear least-
absolute-value problem . Computational results with a computer
code version of the al gorithm are given .
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1. INTRODUCTION

The standard linear regress ion model i s usual ly wr itten as : -

follows :

• Y 1 = x
1181 + x12 8~ 

+ ... + Xim8m + €
~~
, 1 1, .. ., fl, (1)

where x 1 (x ,1, x ,2, •. .
~~~ ~~~ are known va lues of the independent

var iables , y1 i s an observed va lue of a dependent random variable,

• is an error term and the 8.~’ s are the unknown parameters.
• It is often desirabl e to inc l ude parameters in the model that

represent the “effect” of different levels of one or more “factors ”.
This can be done us ing dummy (0,1) var i ables to represent the
levels of the factor , and is usually referred to as the analysis’
of cova ri ance — e.g., see Searl e (1971, chap. 4). Throughout this
paper we assume that each observation is affected by at most one
of the K levels of a single factor. The regression model then
becomes
y.~ = x 1181 + X1282 + ... + Xjm8m + d11c~1 + d12cz2 + ... + d1~a~ + C.~ (2)

where

1 if kth level of factor is present ,
dik = 0 otherwise , k=1, .. ., K, (3)

and the ak s are unknown parameters representing the effect of eac h
level of the factor on the response.

The class ica l procedure for estimating the unknown parameters
is to solve the following least squares problem.

n m K 2Minimize E (y. - E x148. - E dik~k
) 14i

1 1  ~ j=1 “ ~ k=1
Computational techniques for solving (4) can be found in Searl e
(1971, chap. 4). Strong theoretical j ustification (Grayblll (1961))
can be made for the least squares esti~’ates when certain assumptions
on the distributions of the random variables are made . However ,
In the presence of fat-tailed distributions or outliers , least
absolute value (LAy ) estimates may be recon,i,ended. Empirical
studies (see Barrodale (1968), Glahe and Hunt (1910), Kiountouzis
(1973)) comparing least squares and LAV estimators have demonstrated

• .• I
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the worth of the LAV criterion . The LAV problem may be stated :
• n m K

Minimi ze Z ~~ 
- E x1 .$. - 

~ ~~~~~ (5
• i=1 j 1 ~~~~~~ k=1 1

It is generally recognized that the LAV problem may be solved

• efficiently with a special purpose linear programing algorithm
(see Barrodale and Roberts (1973)). The main purpose of this
paper is to develop a further refinement of the linear programming

• approach to handle dummy variables . The advantages of the refine-
ment are a reduction in computer processing time , and a reduction in
computer storage.

Section 2 revIews the LAV algorithm of Barrodale and Roberts
(1973) and develops the theory necessary to take advantage of the
structure arising In the LAV problem when dummy variables are
present. Section 3 discusses the computer code implementation and
presents some computational results. Section 4 presents sampl e
probl ems where LAV estimation is used.

2. THE LINEAR PROGRAMMING ALGORITHM
2.1 RevIew of the Barrodale and Roberts’ Algorithm

We will begin this section wi th a brief review of a revised
simplex implementation of the Barrodale and Roberts algoritliu.
A more detailed description of this procedure - generalized to
handle linear constrai nts - is given by Armstrong and Hultz (1977).

Charnes, Cooper and Ferguson (1955) demonstrate how the LAV
problem associated with (1) can be written as the following linear

• programming (LP) problem .
n

Minimize z = E (P. + N1)i=1 1

subject to
X8 + IP - IN = V
P > O , N O

where X Is the n by m matrix (x1~ )1 V is the vector of y1 ’s, P and
N are, respectively, the vectors of positive and negative deviations.

A basis for this LP problem is formed by m Independent rows of

Li . •
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X. We denote this submatrix by X8 and its inverse by X~~. We define
18 to be the ordered set of row IndIces forming X 8 (the row Index of
X corresponding to the fIrst row of is the first element of 18

• and so on) and NB Is the index set of nonbasic rows .
We make the transformation A = X ~ B and the probl em becomes :

Minimi ze z £ (P 1 + N1)• 1=1
• subject to

Aq + ~i(q) 
- Ni(q) Y j (q ) I  q • 1, 2, ..., m

X 1X~~A 
+ P~ - N1 = y1, I NB

where 1(q) is the q-th element of lB.
A current basic solution consists of

A q = Yj (q)~ 
q 1, 2, ... , m

Pj (q ) = N1(q) 
= 0, q = 1, 2, ... m

y1 - X 1~ ; i ~~~N8,y 1 - X 1~~> 0• 
~~~ • =

1 0; 1 c NB, y1 
- X1

j 0

— 
- i ~~ NB, — 0

N. =
1 0; 1 ~ NB, X1~ - y1 < 0

To assist In obtaining the IP reduced costs or rate of change
achi eved by remov ing a row from the bas is , we define

sgn (y1 
- ~~~~ I c NB t

= +1 or -1, when y1 - 0, 1 c NB.

When the deviation for a nonbasic row is zero, an initial ascignment
of +1 or -1 to Oj IS arbitrary and thereafter the algorithm wi ll
determine the value.

The LP dual variables (see Wagner (1959) for a statement of
the dual problem) associated with the basic constraints are given
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The dua l variables associated wi th the nonbasic constraints are ~1
or -1. Thus, the optimality condition for the specialized LP algo-
rithm of Barrodale and Roberts is

-1 < i~ . < + 1, 1 = 1, 2, .. ., m.

Let us assume that the optimality condition is not satisfied .
Then, there exists a component of -n(say, 

~~ 
with liT i > 1. The

row X i(r) has now been labeled as leaving the basis. The value of

° 
= ~9~) ~~~ 

indicates whether A r is to be increased or decreased.
Because the objective is to minimi ze the sum of the residuals , A r
should be increased if is negative and A r should be decreased
if iTr is positive . The objective value may not strictly decrease
at each Iteration when degeneracy (i.e., V , = = 0, 1 c NB) is
present. Degeneracy never seems to cause cycling in practice and
can be resolved with the perturbation technique of Charnes (1952).

• We will ignore the implications of degeneracy for the remainder
of this paper.

Once the algorithm has specified that Xj(r) is to leave the
basis , it must determine the row of X to enter the basis in the
r-th position . This is accomplished through a partial sort of
the ratios :

— 1 —1

—1 ~~ 
- ~~~~~~~~~~~~~~~~~~~~~ i~~ NB, 

~
)
~i XiX8(r) > 0

where XR(r) is the r-th column of X8 . Let 1(u) denote the indices
of i c 18 forming the u smallest ratios. The algorithm then deter- p

mines the value of u (say 
~

) that satisfies
—1

I -it - E_ pa~X .X8, > 1r icL(u- 1) 1 ~r,

—1
I1Tr t - 

. • ~
_ P01

~~
XB(r) ~ 1.

i cL(u)
Let t be the unique index which is in 1(u ) and not in L(ii-1). The
row of X to enter the basis in the r-th position is X~. The algorithr ii
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— 1
updates X 8 , sets a~ = -c ,~ for i c L(u-1) and proceeds to the

next iteration. The process terminates when -1 < < 1,

I • 1, 2, . . . , m.

2.2 Extension of the LAV Algorithm to Handle Dumy Variables

Problem (5) can clearly be handled within the framework of

the algorithm outl ined in the previous subsection - we need only

expand the observation matrix to include the dummy variables . How-

ever, we will show that substantial savings can be achieved by

• recognIzing the problem’s special structure.

• The linear programming equivalent of problem (5) is:
- 

n
Minimi ze E (P. + N.) (6)

1 1

subject to K
x1181 

+ x1282 
+ ... + x . 8  + d~~cz~ + - N1 

= y1;

P1 > O , N1 >O; i l, 2, ...,n.

Rewriting the constraints in matrix notation ,
X B + Dc z + I P - !N Y.

Further simpl i fying the notation, we define

I8
V =  (X D) and y = I  .

The constraints become

~J y + IP - IN Y.

The algorithm of Barrodale and Roberts can now be a ,plied directly • -

• with V and y taking the place of X and 8~ respectIvely. Let VB
denote a basis for the problem formed by m + K independent ‘ows of
V. From the independence of the rows of V~ it follows that at
least one V 1 with dik = 1  (i.e., the m + k-th element of V 1 equals
1) must be present -In V9 for k = 1, 2, . . .K. Hence, V8 may be

partitioned as

I X~
V =1B

—— _~~_~~~~~~~~_±_ __
~~~ ~~~~~~~~~

— - - - •
~~
—
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where is an m by m submatrix of X , is a K by m submatrix of
X , I is a K by K identity matrix and DF is an m by K matrix wi th
at most one nonzero entry in each row (the nonzero entry being unity).

The inverse of V B is given by
1 -1

-1 = I (x~ - DF X GY ’ . (X F - DFXG) 0F
VB I -1

~ 
•~•X j~;(Xf - DFXG Y ’ 1 + XG(XF - DFXG

) Dr
We wil l  demonstrate how the steps of the Barrodale and Roberts ’

algorithm can be executed conveniently with existing data ,

W (X~ - DFX G ) and a knowledge of the rows forming XF and XG.
The logic behind this refined algorithm will be similar in many
respects to the generalized upper bounding techniques (see Dantzig
and Van Slyke , ( 1967)) of linear progran~- - ing . In fact , upon
taking the LP dual of (6), generalized upper bound constraints can
be recognized.

Proceeding in a manner analogous to that used in subsection
2.1 , we define NB to be the index set of nonb’sic rows and 1(q)
to be the q-th basic row . We also define and to be the vLctor
wi th components y corresponding to and XG. • -

Associated with VB, we have a current solution

(
~‘L v-1 (~F\B

Through the previous partitioning scheme,

~~
=W Y F

_ W D
FYG 

- p

~~
= W(Yr - OFYG) 

•

where the q-th component of Y* equals Y j (q) - 

~i(m+k ) when
dj (q) k 1, k 1, 2, .. ., K and equals 3’ i(q) when dj(q) k =

k = 1, 2, ..., K. Now is easily determined by

~i(m+k) 
-

L
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The sign of the residual for the nonbasic rows may be obtained
• in a similar manner to that given in subsection 2.1. The only dif-

ference is an extra addition that is required to evaluate the
residual .

• The value of the vector of dua l variables at any iteration can
also be calculated easily from W. We have
iT = (i~1, it2, iT~~ lT 4p •. . ,  it~~~~) = 

~i~NB ~~~ 
O1 ))V~

1,

where 0. is the i-th row of D.
• 1 —lBy utilizing the partitioning of

it ( ~~ a. (X.W - D1XGW), E a.(D. + D.WGWDF)).• I cNB 1 1 icNB 1 1 1

Let dt = Z a
~
D1 and Z = 

~~ a1X~ 
- d*XG, then iT = (ZW, d* _ ZW Dr) .

icNB icNB
Finally, we define the index set

Q (k) = {QId j(q),k = 1; k = 1, 2~ ..., K; q < m}

It can now be observed that the first m components of ii are equal to
ZW and the last K components are given by

k = d* - E -it , k = 1, 2, .. ., K.k qcQ(k) q

The optimality condition is

-1 
~ ~ +]~ ~ = 1, 2 m+K.

Assuming the optimality condition is not satisfied , we have > 1
and p= sgn 

~
‘r~ 

Three mutually exclusive and exhaustive cases can
arise.
CAsE 1. r > m, di (r)~~ 

= 1 and Q(k) = •. This means that the row
to leave the basis corresponds to the only observation in the basis
affected by factor ~~~. Since the new basis must be nonsingular , the
row to enter the basis has the form (X1, Di ). dik 

= 1. The ratio
test is simplified to consider

8 — 

~k
1’ dik 

= 1, iENB, pa1 > 0.

Let L(u) denote the indices of i yielding the u smallest of these
values. Then ii = where [irr/21 indicates the greatest integer
less than “~

j2. Let t be unique index which is in 1(u) and not in
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L(~-1). The row (Xe, ~~~ 
enters the basis in the r-th position .

Notice that W does not change and the algo~ ithm may proceed directly
to the next iteration after updating a~, I £ L(u-1).
CASE 2. r < m. The ratios are given by

(y 1 - X 18 - czk)/(p(X I ~
Xi(m+k))W r); I e NB, dik l , k 1 , 2 , ..., K

pa1(X 1 - X.( +k))W > 0

and

• (y f 
— x . / p X . w : ,, 1 c NB; dlk = 0, k 1, 2, . .., K; p~1X1W~ > 0

where W r is the r-th column of W.
The remaining steps are completely analogous to those given

previously and will not be repea ted.
CASE 3. r > m , di(r)~~ 

I and Q(~) /
In this situation we reorder the rows of V by i nterchanging

(X i(r)~ D~~~)

wi th an (Xi(r*)~ 
Di (r*))~ 

r* c Q(~) (in other words , dj ( r*)~~ 
= 1).

The new W denoted by W~ is given by
= Wqj q $ r*, j = 1, 2, ..., m

and
W*~. = E W ., j = 1, 2, ..., m.r 3 qcQ(~) ~

We are now in CASE 2 with r = r* and may proceed as previously in-

k
3. IMPLEMENTATION AND COMPUTATIONAL RESULTS

Both algorithms described in sec tion 2 have been coded in
FORTRA N by the authors . They are maintained as independent sub-
routines with all input and output as parameters of the ~.ALL
statements. We refer to the subroutine corresponding to the revised
simplex implementation of Barrodale and Roberts as L1NORM. The sub-
routine corresponding to the algorithm outlined in the subsectiun
2.2 is called L1DUM . The remainder of this section compares these
subroutines with regard to computer and s.. ution times .
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3.1 Computer Storage.
Subroutine I1NORM saved the V matrix explicitly. This could

easily be reduced with extra coding and without knowledge of the
compact inverse procedures discussed here. ~he same can not be
said of the basis inverse. This was represented as an (m+K) by
(m+K) matrix in L1NORM and as an m by m matrix in L1U1~’1.

L1DUM maintained a capacity of K 15, n < 300 and m < 15.
While L1NORM maintained a capac i ty of m+K ~ 25 dnd n < 300. Some
additional coding was , of course, required f~ r L1DUM. Overall
L1NORM utilized approximately 1500 more words of internal storage
than L1DIJM .

• We did not employ double precision accuracy on any variables .
On some machines (we ran on a CDC 6600 with a sixty bit word) or
when solving less stable problems , double precision might be recom-
mended and then the difference in storage utilization would be more
dramatic. It should be noted that although we have developed the
algorithms using an explicit representation of the inverse , ~.he
algorithm can easily be adapted to other methods for solving linear
systems. In particular , decomposition methods such as those dis-
cussed by Bartel s and Golub (1969) and Cline (1976) may be recom-
mended in certain instances.

3.2 Solution Time.
A battery of test problems were solved with two computer ~.odes

L1NORM and L1DUM. L1DUM and L1NORM began with the same initia l
basis and used the rule of the max fl-~1I} to define the row to
leave the basis at any iteration.

Table 1 presents a summary of the computational results
• Problem sets were randomly generated wi th five problems in each

set. All runs were on the CDC 6600 at The University of Texas at
Austin. Times are CPU times in seconds. The calls to the system
clock were made in the main program immediately before and imedi-
ately after the respective subroutines were called . The number of
pivots indicat~�s the number of times the basis i nverse was updated .
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TABLE I
PROBLEM SIZE L1DUM LINORM

• # K m n Time Pivots Time Pivots
1 4 4 60 .103 13.8 .119 15.0
2 8 4 60 .105 13.4 .186 17.6
3 12 4 60 .119 15.8 .263 20.2
4 4 8 60 .210 20.4 .216 20.4
5 8 8 60 .212 22.4 .304 24.2

6 12 8 60 .213 23.6 .429 26.6
7 4 4 120 .210 13.0 .235 15.2
8 8 4 120 .314 20.4 .447 25.4
9 12 4 120 .298 19.2 .598 28.0
10 4 8 120 .549 28.6 .506 29.8

• 

. 

11 8 8 120 .578 32.8 .709 35.4
12 12 8 120 .566 31.6 .898 36.0
13 4 4 180 .450 19.2 .491 22.6
14 8 4 180 .550 22.4 .766 29.4
15 12 4 180 .476 20.6 .948 33.2

16 4 8 180 .894 31.2 .826 32.0
17 8 8 180 1.052 37.8 1.139 39.2• 18 12 8 180 1.128 42.0 1.634 49.8
19 4 4 240 .613 29.2 .609 20.2
20 8 4 240 .885 26.2 1.227 35.2

21 12 4 240 .890 30.4 1.399 38.6
22 4 8 240 1.326 35.2 1.230 37.2
23 8 8 240 1.492 40.2 1.608 43.0
24 12 8 240 1.758 49.0 2.291 54.4
25 4 4 300 .995 24.4 .998 25.6

• 26 8 4 300 1.083 26.4 1.408 33.6
27 8 4 300 1.125 27.6 1.952 42.6
28 4 8 300 1.997 43.2 1.768 43.4
29 8 8 300 2.104 45.4 2.256 49.4
30 12 8 300 2.423 53.6 3.191 62.4
This table presents computational results with thirty sets
of test problems . Five problems were solved for each dimen-
sion and reported times and iterations are means of the re-
sults . All times are in CPU seconds . :



- •  - ---

~~~~~~~~~

- - - -

— 11—

L1OtJM performed better in most instances . As expected , the
relative efficiency of L1DUM increased as the number of parameters
associated with dummy variables (i.e., the value of K) increased .

4. APPLICATIONS

In problems that require dummy variables , the effect of out-.

• liers becomes more difficult to assess as the number of independent
variables and dummy vari ables increases . The motivation for using
a robust procedure such as LAV estimation is the same for problems
that require dummy variables as it is in the general regression
situation . The main purpose of this paper is the refinement of
the linear programming approaches to LAV estimation , in this sec-
tion , we discuss two applications of LAV estimation that invo l ve
dummy variables , and a small numerical example is presented .

There are several ways that dummy variable techniques are
used in statistical data analysis. One situation occurs when a
designed experiment is carried out , and the experimenter is aware
of one or more ~‘concomitant variables~’ that may affect the response
and cannot be controlled by the experimenter. This s’tuation is
usually referred to as the analysis of covariance and comb i nes
features of regression analysis and analysis of variance.

To illustrate the estimation procedure, we use the data in Table

~I. The response is the average daily gain of pigs , and the experi- - 
-

menter is interefted in the effect of four feeds. There are two co-
variates - initial age and weight - which are bel i eved to affect
weight gain. The values of the two covariates and the dummy var -- - - I
bles are given in Table II. The LAV estimates of the parameter’
are given in Table III , which also shows t~ie least squares estimates . ‘

.

If the experimenter wants to evaluate the relative importance of one
of the covariates , he can delete that column and recompute the LAV - -

estimates. It is possible to develop various approaches - see e.g..
McNeil and Tukey (1975) — to assessing the “q~ lity cf fit ” associa-
ted with a given model tha t can be used in a manner that parallels

L 
‘ 

---• • ••• • •

~~~~~~

•- • • -
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~

• •• =- -• • - - • • • • • • •

~~

• •

~~~~~

• • • ••



-12-

TABLE 11 SOURCE : Snedecor and Cochran (1967, p. 440)
l)ays Pounds Pounds/Day Feed 1 Feed 2 Feed 3 Feed 4

x i i  x 12 y1 d11 d12 d13 d14
78 61 1.40 1 0 0 0
90 59 1.79 1 0 0 0
94 76 1.72 1 0 0 0
71 SO 1.47 1 0 0 0
99 61 1.26 1 0 0 0
80 54 1.28 1 0 0 0
83 57 1.34 1 0 0 0
75 45 1.55 1 0 0 0
62 41 1.57 1 0 0 0
67 40 1.26 1 0 0 0
78 74 1.61 0 1 0 0
99 75 1.31 0 1 0 0

H 80 64 1.12 0 1 0 0
H 75 48 1.35 0 1 0 0

94 62 1.29 0 1 0 0
91 42 1.24 0 1 0 0
75 52 1.29 0 1 0 0
63 43 1.43 0 1 0 0
62 50 1.29 0 1 0 0
67 40 1.26 0 1 0 0
78 80 2.67 0 0 1 0
83 61 1.41 0 0 1 0
79 62 1.73 0 0 1 0
70 47 1.23 0 0 1 0
85 59 1.49 0 0 1 0
83 42 1.22 0 0 1 0
71 47 1.39 0 0 1 0
66 42 1.39 0 0 1 0
67 40 1.46 0 0 1 0
67 40 1.36 0 0 1 0
77 62 1.40 0 0 0 1
71 55 1.47 0 0 0 1
78 62 1.37 0 0 0 1
70 43 1.15 0 0 0 1
95 57 1.22 0 0 0 1
96 51 1.48 0 0 0 1
71 41 1. 31 0 0 0 1
63 40 1.27 0 0 0 1
62 45 1.22 0 0 0 1• 67 39 1.36 0 0 0 1
LAV Estimation For Covariance Model
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significance testing In the LS analysis. There is , however, no
sampling theory for L1NQRM estimates. Consequently, these model-
building techniques are most useful In exploratory data analysis.

TABLE III

Parameter

(13 (1
4

LAV -.006706 .009594 1.466 1.326 1.310 1.310
IS -.003454 .007414 1.337 1.182 1.318 1.2 17

Estimates of the parameters for data In Table II.

A second situation in which dummy variables can be used Is
when adjusting for the effect of seasonal factors in an economic
time series. Suppose that the trend-cycle portion of the time
ser ies Is represented with an “empirical function” composed of
polynomial pieces called cubic splines , and that y1 is the obser-
ved value of the time series In month 1 , for i’~1, ..., n. Then
the Xjj’S in equation (2) are defined as follows :

l~ (j 1, 2, 3),

X j j  
~ (~~~ _~) ~ ~~ j-3’ ~

j = 4, ..., m+3),

1 If I - K [(1—1)/KJ j - (m+3), (j m+4, ..., K+m+4 )
x~_I

0 otherwise,
where the knots { t ;  ~J = 1, ..., m) are known constants which divide
the time domain into m+1 Intervals , and there are k 12 levels of
the seasonal factor. Frome and Armstrong (1977) considered LAV
es timation for thi s model and have presented a numerica l example
with m 9 and n 132 where the response is the residential con-
struction authorized In Texas for each month in the time period from
1966 to 1976.

U ~~~~~~~~_ 
• 

--
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5. CONCLUSIONS

With the development of more efficient computer codes
(algorithms) to obtain the I

~ 
norm estimates, the L~ norm has

become an important tool In data analysis. This paper has demon-
strated how the Barrodale and Roberts’ algorithm can be special-
ized to solve a class of problems involving dummy variables which
arise in several Instances. The specialized algorithm has been
shown to reduce solution times and computer storage requirements
when several columns of the model are associated with dununy var—
iables . Although we have not studied the numerical properties
in detail , numerical ly stable procedures for solving linear sys-
tems can easily be combined with the framework of the algorithm.

The two FORTRAN subroutines used to obtain the results
reported here are available from the authors for a handling
charge.
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